TV-Show Retrieval and Classification

نویسندگان

  • Cataldo Musto
  • Fedelucio Narducci
  • Pasquale Lops
  • Giovanni Semeraro
  • Marco Degemmis
  • Mauro Barbieri
  • Jan H. M. Korst
  • Verus Pronk
  • Ramon Clout
چکیده

Recommender systems are popular tools to aid users in finding interesting and relevant TV shows and other digital video assets, based on implicitly defined user preferences. In this context, a common assumption is that user preferences can be specified by program types (such as documentary, sports), and that an asset can be labeled by one or more program types, thus allowing an initial coarse preselection of potentially interesting assets. Furthermore each asset has a short textual description, which allows us to investigate whether it is possible to automatically label assets with program type labels. We compare the Vector Space Model (vsm) with more recent approaches to text classification, such as Logistic Regression (lr) and Random Indexing (ri) on a large collection of TV-show descriptions. The experimental results show that lr is the best approach, but ri outperforms vsm under particular conditions.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

تعریف از «خود» و ساخت «دیگری»؛ مطالعه پسااستعماری سریال‌های «حریم سلطان» و «الفاروق عمر»

In today’s challenging world, and so in the Middle East, TV series as the cultural products have found a extensive and effective cultural diplomacy function. Among the countries in the region, Turkey and Saudi Arabia, with TV series in various genres, have been able to stabilize their position and influence among the satellite television networks. Hence, the basic aim of this paper is to analyz...

متن کامل

A Radon-based Convolutional Neural Network for Medical Image Retrieval

Image classification and retrieval systems have gained more attention because of easier access to high-tech medical imaging. However, the lack of availability of large-scaled balanced labelled data in medicine is still a challenge. Simplicity, practicality, efficiency, and effectiveness are the main targets in medical domain. To achieve these goals, Radon transformation, which is a well-known t...

متن کامل

QEA: A New Systematic and Comprehensive Classification of Query Expansion Approaches

A major problem in information retrieval is the difficulty to define the information needs of user and on the other hand, when user offers your query there is a vast amount of information to retrieval. Different methods , therefore, have been suggested for query expansion which concerned with reconfiguring of query by increasing efficiency and improving the criterion accuracy in the information...

متن کامل

Using Fuzzy LR Numbers in Bayesian Text Classifier for Classifying Persian Text Documents

Text Classification is an important research field in information retrieval and text mining. The main task in text classification is to assign text documents in predefined categories based on documents’ contents and labeled-training samples. Since word detection is a difficult and time consuming task in Persian language, Bayesian text classifier is an appropriate approach to deal with different...

متن کامل

Using Fuzzy LR Numbers in Bayesian Text Classifier for Classifying Persian Text Documents

Text Classification is an important research field in information retrieval and text mining. The main task in text classification is to assign text documents in predefined categories based on documents’ contents and labeled-training samples. Since word detection is a difficult and time consuming task in Persian language, Bayesian text classifier is an appropriate approach to deal with different...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012